Slope and Rate of Change

Fractions Review

If you need to practice basic fraction operations, ask your instructor for the Units on Fractions.

Name: _____

Review of Math 10W:

Fractions

Both in the workplace and in life we are going to have to make comparisons about what to buy and how to pay the best price for something.

What is a fraction? It is a	
How much cake you get compared to the whole thing?	

What makes up a fraction? The top of a fraction is called the _____,

and the bottom of the fraction is called the ______.

Examples:

1	12
_	
2	13

Sometimes we can reduce fractions to ______, we always want to put fractions in lowest terms.

Simplifying Fractions

How to reduce fractions:

Always look for the _____ (GCF).

This is the largest number that both numbers in the fraction can be divided by.

18 = (1, 2, 3, 6, 9, 18)

27 = (1, 3, 9, 27)

What is the greatest common factor of the two numbers above?

Find the GCF between 16 and 48.

16 =

48 =

Greatest Common Factor is _____

Examples:

a)
$$\frac{15}{25} =$$

b)
$$\frac{5}{40} =$$

c)
$$\frac{50}{100} =$$

d)
$$\frac{16}{60} =$$

Worksheet: Simplifying Fractions

Simplifying Fractions Worksheet

Write each fraction in lowest terms.

1)	$\frac{10}{50}$	9) 3	36 31
2)	<u>5</u> 25	$10)\frac{2}{2}$	27 48
3)	$\frac{7}{28}$	11) $\frac{3}{6}$	3 <u>3</u> 56
4)	$\frac{3}{12}$	12) - 2	<u>8</u> 20
5)	$\frac{18}{72}$	$13)\frac{1}{1}$	12 16
6)	$\frac{4}{6}$	14)- 1	30 100
7)	$\frac{42}{60}$	$(15)\frac{1}{6}$	16 50
8)	<u>27</u> 72	16)-	35 100

Equivalent Fractions

Equivalent fractions are sets of fractions that are ______, they just have different numbers for the numerator and denominator. But, when they are divided or ______they equal the same thing.

We can solve for an unknown value in equivalent fractions using cross multiplication.

Examples:

A) Solve for *x*.

$$\frac{x}{4} = \frac{12}{16}$$

B) Solve for *x*.

$$\frac{x}{4} = \frac{12}{16}$$

Examples: Solving for the missing value

x	10	x	20
2	$=\frac{1}{20}$	$\frac{15}{15}$	25
9	36	x	_ 9
\overline{x}	32	1024	- 32

Worksheet: Equivalent Fractions Math 11 – Apprenticeship

Equivalent Fractions Worksheet

Solve for the missing value.

1)
$$\frac{1}{2} = \frac{x}{8}$$

2) $\frac{6}{21} = \frac{y}{7}$
7) $\frac{7}{15} = \frac{21}{y}$
8) $\frac{n}{16} = \frac{1}{2}$

4)
$$\frac{1}{4} = \frac{d}{16}$$
 10) $\frac{t}{7} = \frac{12}{28}$

5)
$$\frac{1}{2} = \frac{5}{x}$$
 11) $\frac{5}{9} = \frac{45}{x}$

6)
$$\frac{9}{n} = \frac{81}{90}$$
 12) $\frac{4}{y} = \frac{8}{5}$